Filling missing meteorological data with Computational Intelligence methods
نویسندگان
چکیده
منابع مشابه
Computational intelligence methods and data understanding
Experts in machine learning and fuzzy system frequently identify understanding the data with the use of logical rules. Reasons for inadequacy of crisp and fuzzy rule-based explanations are presented. An approach based on analysis of probabilities of classification p(Ci|X;ρ) as a function of the size of the neighborhood ρ of the given case X is presented. Probabilities are evaluated using Monte ...
متن کاملPerformance evaluation of different estimation methods for missing rainfall data
There are numerous methods to estimate missing values of which some are used depending on the data type and regional climatic characteristics. In this research, part of the monthly precipitation data in Sarab synoptic station, east Azerbaijan province, Iran was randomly considered missing values. In order to study the effectiveness of various methods to estimate missing data, by seven classic s...
متن کاملFire Data Analysis and Feature Reduction Using Computational Intelligence Methods
Fire is basically the fast oxidation of a substance that produces gases and chemical productions. These chemical productions can be read by sensors to yield an insight about type and place of the fire. However, as fires may occur in indoor or outdoor areas, the type of gases and therefore sensor readings become different. Recently, wireless sensor networks (WSNs) have been used for environmenta...
متن کاملDEA with Missing Data: An Interval Data Assignment Approach
In the classical data envelopment analysis (DEA) models, inputs and outputs are assumed as known variables, and these models cannot deal with unknown amounts of variables directly. In recent years, there are few researches on handling missing data. This paper suggests a new interval based approach to apply missing data, which is the modified version of Kousmanen (2009) approach. First, the prop...
متن کاملComputational Intelligence in Data Mining
This paper describes links between computational intelligence (CI), data mining and knowledge discovery. The generating elements of soft computing based data mining algorithms are defined where the extracted knowledge is represented by fuzzy rule-based expert systems. It is recognized that both model performance and interpretability are of major importance, and effort has to make to keep the re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ITM Web of Conferences
سال: 2018
ISSN: 2271-2097
DOI: 10.1051/itmconf/20182300015